Integral 1
Here is a cute integral that I like.
Let's evaluate:
$$I_0 = \int_{-\infty}^{+\infty} e^{-ipx - k |x|} dx$$
We start by seperating the integral so that we can get rid of the absolute value:
$$=\int_{-\infty}^{0} e^{-ipx + k x} dx + \int_{0}^{+\infty} e^{-ipx - k x} dx$$
We apply the "product rule of exponents":
$$=\int_{-\infty}^{0} e^{-ipx} e^{k x} dx + \int_{0}^{+\infty} e^{-ipx} e^{- k x} dx$$
Expand via Euler's and make use of the fact that sine is an odd function:
$$=\int_{-\infty}^{0} [\cos{px} - i \sin{px}] e^{k x} dx + \int_{0}^{+\infty} [\cos{px} - i \sin{px}] e^{- k x} dx$$
We can make the first term be from 0 to positive infinity by making the substitution x -> -x. We use here that cosine is even and sine is odd again:
$$=\int_{0}^{+\infty} [\cos{px} + i \sin{px}] e^{- k x} dx + \int_{0}^{+\infty} [\cos{px} - i \sin{px}] e^{- k x} dx$$
Beautiful, now combine the integrals:
$$=\int_{0}^{+\infty} [\cos{px} + i \sin{px} +\cos{px} - i \sin{px}] e^{- k x} dx$$
Cancel the sines and bring the 2 (from the addition of the cosines) out front:
$$=2\int_{0}^{+\infty} \cos{(px)} e^{- k x} dx$$
Let's define this integral as $I_1$
$$I_1=\int_{0}^{+\infty} \cos{(px)} e^{- k x} dx$$
Let's proceed with integration by parts
$$u = \cos{(px)}$$
$$du = -p\sin{(px)} dx$$
$$dv = e^{-kx}$$
$$v = \frac{-1}{k} e^{-kx}$$
$$I_1 = -\frac{\cos{(px)}e^{-kx}}{k}\rvert_{0}^{\infty} - \frac{p}{k} \int_{0}^{+\infty}\sin{(px)}e^{-kx}dx$$
Evaluating:
$$I_1 = \frac{1}{k} - \frac{p}{k} \int_{0}^{+\infty}\sin{(px)}e^{-kx}dx$$
Now let's define $I_2$ to be that integrand
$$I_2 = \int_{0}^{+\infty}\sin{(px)}e^{-kx}dx$$
Proceed with integration by parts again:
$$u = \sin{(px)}$$
$$du = p\cos{(px)}$$
$$dv = e^{-kx}$$
$$v = \frac{-1}{k}e^{-kx}$$
$$I_2 = -\sin{(px)}e^{-kx}/k\rvert_{0}^{\infty} + \frac{p}{k}\int_{0}^{+\infty} \cos{(px)} e^{- k x} dx$$
$$I_2 = \frac{p}{k} I_1$$
We have now obtained a system of equations with $I_1$
$$I_2 = \frac{p}{k} I_1$$
$$I_1 = \frac{1}{k} - \frac{p}{k} I_2$$
Solving for $I_1$
$$I_1 = \frac{1}{k} - \frac{p^2}{k^2} I_1$$
You can do a little bit more algebra after this substitution to get:
$$I_1 = \frac{k}{k^2+p^2}$$
Our original integral is twice this
$$I_0 = \int_{-\infty}^{+\infty} e^{-ipx - k |x|} dx = \frac{2k}{k^2+p^2}$$